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ABSTRACT

Taking advantage of the error resilience in many applications
as well as the perceptual limitations of humans, numerous ap-
proximate arithmetic circuits have been proposed that trade off
accuracy for higher speed or lower power in emerging applications
that exploit approximate computing. However, characterizing the
various approximate designs for a specific application under cer-
tain performance constraints becomes a new challenge. In this
paper, approximate adders and multipliers are evaluated and
compared for a better understanding of their characteristics when
the implementations are optimized for performance or power. Al-
though simple truncation can effectively reduce the hardware of
an arithmetic circuit, it is shown that some other designs perform
better in speed, power and power-delay product. For instance,
many approximate adders have a higher performance than a
truncated adder. A truncated multiplier is faster but consumes
a higher power than most approximate designs for achieving a
similar mean error magnitude. The logarithmic multipliers are
very fast and power-efficient at a lower accuracy. Approximate
multipliers can also be generated by an automated process to be
very efficient while ensuring a sufficiently high accuracy.
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1 INTRODUCTION

As a potential technique for implementing complex computations
with reasonable speed and power consumption, approximate com-
puting has been explored actively from circuits to programming
languages. Among circuit designs, adders and multipliers have
been a focus because they play a pivotal role in determining the
performance and power dissipation of many compute-intensive ap-
plications [8]. Therefore a large variety of approximate adders and
multipliers have been proposed. However, these designs usually
seek tradeoffs among accuracy, performance and power consump-
tion, i.e., a design may be very fast but with a low accuracy
or high power, or a very power-efficient design may have a sig-
nificantly low speed or accuracy. Also, different designs in the
literature have been evaluated using different synthesis tools and
technologies. These differences have made it difficult to choose
a suitable approximate design for a specific application with
designated purposes.

An evaluation and comparison of the accuracy and circuit
characteristics was provided in [11] for approximate adders, mul-
tipliers and dividers. However, the circuit measurements were
obtained without considering any design constraints and, hence,
the generic power-delay product (PDP) metric was mainly used
for hardware evaluation. At a similar PDP, it was concluded that
a truncated arithmetic circuit results in a smaller error magnitude
(in the mean relative error distance (MRED)) than most of the
other approximate designs.

In this paper, rather than considering the overall measurement,
high performance and power efficiency are respectively pursued
as independent design metrics. For example, an approximate
design with a high speed is useful for coping with aging-induced
timing errors in adders and multipliers [1]. Also, high-performance
arithmetic circuits are preferred in real-time machine learning
systems [10]. For mobile and embedded devices, power-efficient
arithmetic circuits would be key to the extended use given limited
battery life. In this work, therefore, the approximate circuits
are optimized for maximizing performance (through delay) or
minimizing power (through area). Compared to previous studies,
several recent approximate arithmetic designs are included for
comparison and to provide new insights to approximate arithmetic
circuit design.

In the remainder of this paper, Section 2 introduces the simu-
lation methodology. Sections 3 and 4 review and comparatively
evaluate approximate adders and multipliers, respectively. Sec-
tion 5 concludes the paper.
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2 SIMULATION METHODOLOGY

The accuracy of the approximate designs is evaluated through
Monte Carlo simulations. The error distance (ED = |M’ — M]|)
and the relative error distance (RED = |52|) are then calculated,
where M’ and M are the approximate and accurate results,
respectively [18]. The mean error distance (MED) is calculated
by averaging all of the obtained EDs. The error characteristics of
the approximate designs are assessed by the error rate (ER, the
probability of producing an incorrect result), the normalized MED
(NMED, the normalization of MED by the maximum output of
the accurate design) and the MRED (the average value of all of
the obtained REDs).

To assess the circuit characteristics, the approximate designs
are implemented in VHDL and synthesized using the Synopsys
Design Compiler (DC) in STMicro’s 28-nm CMOS technology,
with a supply voltage of 1.0 V at a temperature of 25°C. For a
fair comparison, all designs use the same process, voltage and
temperature with the same optimization option. To compare
speed and power, the approximate circuits are synthesized un-
der different constraints. The critical path delay of a design is
constrained to the smallest value without a timing violation for
the delay-optimized synthesis, whereas the area is minimized
for the area-optimized synthesis. The DesignWare library and
“ultra compile” are used in the synthesis for optimization. The
critical path delay and area are reported by the Synopsys DC.
Power dissipation is measured by the PrimeTime-PX tool with
10 million random input combinations.

3 APPROXIMATE ADDERS

Two basic adders for binary addition are the ripple-carry adder
(RCA) and the carry lookahead adder (CLA). For an n-bit RCA,
the delay and circuit complexity increase proportionally with n
(denoted by O(n)). The delay of an n-bit CLA is logarithmic
in n (or O(log(n))), thus significantly shorter than that of an
n-bit RCA. However, a CLA requires a larger circuit area (in
O(nlog(n))), which results in a higher power dissipation.

To reduce the critical path delay of an accurate adder, many
approximation methodologies have been proposed, including in-
volving speculative operation, segmentation, carry selection and
an approximate full adder.

3.1 Review

In this section approximate adders are briefly introduced. Please
refer to [11] for a detailed introduction to these designs.

3.1.1 Speculative Adders. In an n-bit speculative adder, k (k < n)
least significant bits (LLSBs) are used to predict the carry input
for each sum bit [22]. Thus, the critical path delay is reduced
to O(log(k)) (for a parallel implementation such as the CLA,
the same throughout this section unless otherwise noted). The
almost correct adder (ACA) is designed to reduce the hardware
overhead by sharing part of the carry-generation circuits [32].

3.1.2 Segmented Adders. A segmented adder is implemented
by using several smaller adders operating in parallel. They in-
clude the equal segmentation adder (ESA) [26], the error-tolerant
adder type II (ETAII) [36], the accuracy-configurable approxi-
mate adder (ACAA) [13] and the dithering adder [24]. The delays
of the segmented adders grow with O(log(k)) and the circuit
complexities grow with O(nlog(k)) for ESA and ETAII, and with
O((n — k)log(k)) for ACAA [11].
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3.1.3 Carry Select Adders. An n-bit carry select adder consists
of m = [ﬂ blocks, and the carry input for each block is selected
using different schemes in different designs. In the speculative
carry select adder (SCSA), each block is made of two k-bit adders:
adder0 with carry-in “0” and adderl with carry-in “1”; the sum
is selected by a multiplexer according to the carry-out of adderQ
in the previous block [6]. SCSA and ETAII achieve the same
accuracy for the same value of k£ due to the same carry prediction
function. For the carry skip adder (CSA), each block consists of
a sub-carry generator and a sub-adder [14]. The carry-in of the
(i + 1)*" sub-adder is determined by the propagate signals of the
i*" block, which enhances the carry prediction accuracy. In the
carry speculative adder (CSPA), each block contains one sum
generator, two internal carry generators and one carry predictor;
fewer than k input bits are used in a carry predictor [20]. In the
consistent carry approximate adder (CCA), the carry prediction
depends not only on its LSBs, but also on the higher bits [17].
The generate signals-exploited carry speculation adder (GCSA)
has a similar structure as CSA and uses the generate signals
for carry speculation [9]. In the gracefully-degrading accuracy-
configurable adder (GDA), control signals are used to configure
the accuracy by selecting an accurate or approximate carry-in
signal using a multiplexer for each sub-adder [34]. In the carry
cut-back adder (CCBA), the full carry propagation is prevented
by a controlled multiplexer or an OR gate for a high-speed
operation [5]. Although the critical path delays of the carry select
adders vary, they generally grow with O(log(k)), where k is the
size of the sub-adder.

3.1.4 Approximate Full Adders. In this class of designs, the LSBs
are implemented by approximate full adders. These adders in-
clude the simple use of OR gates (and one AND gate for carry
propagation) in the lower-part-OR adder (LOA) [23], the ap-
proximate designs of the mirror adder [7] and the approximate
XOR/XNOR-based full adders [33]. For the LOA, the critical
path is approximately O(log(n — l)), where [ is the number of
approximate LSBs. Finally, an adder whose k LSBs are truncated
is referred to as a truncated adder (TruA) that works with a
lower precision. It is considered as a baseline design.

3.2 Evaluation

In this evaluation, 16-bit approximate adders are considered.
For CSPA, the size of the carry predictor is [k/2]. The global
speculative carry for CCA is “0”. All sub-adders are implemented
as CLAs because most approximate adders are designed based
on the CLA.

The simulation results show similar performance trends for
the MRED and NMED of the approximate adders, so only the
MRED is considered in the comparison. Figs. 1, 2 and 3 show the
comparison of MRED, ER, delay (for delay-optimized synthesis),
power (for area-optimized synthesis) and PDP.

Fig. 1 shows that, among the adders with small MREDs, LOA
and ETAII are faster than the other designs, whereas CCA is
the slowest followed by CSA. CSA-6 is not shown in the figures
because it is accurate due to the precise carry generated for every
block, so the ER and MRED of CSA-6 are 0. For a high MRED,
ESA and CSPA are faster. When the same ER is considered,
ETAII, SCSA and ACAA are among the fastest designs.

Fig. 2 shows that in terms of power consumption, CCBA,
LOA and TruA are the most efficient designs, while ACA is very
power consuming. However, CCBA, LOA and TruA have very
high ERs. CSA has a rather low ER. For a similar ER, ETAII and
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Figure 1: A comparison of optimized delay for the approximate
16-bit adders using different error metrics. The parameter k
for LOA and TruA ranges from 3 to 9 from left to right, from
8 down to 3 for ESA and ACA, and from 6 down to 3 for the
other adders from left to right. For CCBA, the configurations
with the smallest PDPs are chosen for a similar MRED.

ACAA are very power-efficient, while ACA consumes relatively
high power.

As shown in Fig. 3, CCBA, LOA and TruA have smaller PDPs
than the other designs for a similar MRED; ACA and CCA have
larger PDPs. ETAII, SCSA, CSPA and GCSA show moderate
PDPs. ESA has a rather small PDP, but a considerably larger
ER and MRED. With the highest ERs, CCBA, LOA and TruA
show the smallest PDPs for a moderate MRED. In fact, these
approximate adders show a decent tradeoff in ED and hardware

Table 1: Summary of approximate adders.

speed power
Adder | ER. ED (delay-optimized) (area-optimized) PDP
ACA high high high
ESA |high high high low low
ETAII
ACAA
SCSA
CSA | low low
CSPA high high
CCA low
GCSA
CCBA |high low low low
LOA |high low low low
TruA |high low low
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Figure 2: A comparison of power for the area-optimized ap-
proximate 16-bit adders using different error metrics.

efficiency. In particular, they are useful in applications in which
ER is not important. Consequently, truncation can be used to
design a hardware-efficient approximate adder (albeit with a high
ER). On the other hand, the carry select scheme is more effective
for an approximate adder design to achieve a high accuracy.
Table 1 summarizes the different approximate adders, with
their advantages and disadvantages highlighted (i.e., the metrics
with moderate values are not shown). The MRED and NMED of
approximate adders are represented by ED in the table.

4 APPROXIMATE MULTIPLIERS

Multiplication is implemented by partial product generation,
accumulation and a final addition. A partial product is usually
generated by an AND gate. The most common partial product
accumulation structures are the Wallace and Dadda trees and the
carry-save adder array. In a Wallace tree, the FAs (or half adders
(HAs)) in each layer operate in parallel without carry propagation.
Thus, for an n X n multiplier, the delay of the Wallace tree grows
with O(log(n)). Also, the FAs in a Wallace tree can be considered
to be (3:2) compressors and can be replaced by other counters
or compressors (e.g. a (4:2) compressor) to further reduce the
delay. The Dadda tree has a similar structure as the Wallace tree,
but it uses as few adders as possible. In a carry-save adder array,
the carry and sum signals generated by the FAs (or HAs) in a
row are passed on to the FAs in the next row. FAs in a column
operate in series. Hence the delay of an n X n carry-save adder
array is approximately O(n), longer than that of a Wallace tree.
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Figure 3: A comparison of power-delay product (PDP) and
MRED for the approximate 16-bit adders.

Five main methodologies are used for approximating an un-
signed multiplier: approximation in generating the partial prod-
ucts, approximation (including truncation) in the partial product
tree, using approximate adders, counters or compressors in the
partial product tree, using logarithmic approximation, and using
an automated process such as a genetic programming method.

4.1 Review

4.1.1 Approximation in Generating Partial Products. In [15], the
accurate 2 X 2 multiplication result “1001” is simplified to “111”
to save one output bit when both the inputs are “11”, which
results in an approximate 2 X 2 multiplier. Larger approximate
multipliers are then designed by using the approximate 2 x 2
multiplier, which is referred to as the underdesigned multiplier
(UDM). UDM introduces an error when generating the partial
products, however the accumulation remains accurate.

4.1.2 Approximation in the Partial Product Tree. The broken-
array multiplier (BAM) omits some carry-save adders in an array
multiplier in both the horizontal and vertical directions [23]. A
more straightforward approach is to truncate some LSBs on the
input operands and, thus, a smaller multiplier is used to process
the remaining most significant bits (MSBs). This truncated mul-
tiplier (TruM) will be considered as a baseline design. In [35],
partial product perforation is applied to different multiplier struc-
tures (PPAM), which ignores several consecutive rows of partial
products (not necessarily starting from the LSB). The error tol-
erant multiplier (ETM) consists of a multiplication section and a
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non-multiplication section [16]. A control block is used to decide
if the multiplication section is to be activated to multiply the
LSBs or the MSBs. In the static segment multiplier (SSM), no ap-
proximation is applied to the LSBs; either the MSBs or the LSBs
of the operands are accurately multiplied depending on whether
its MSBs are all zeros [30]. In [4], a bit-width aware approxi-
mate multiplication and a carry-in prediction scheme are used to
construct an approximate Wallace tree multiplier (AWTM).

4.1.3 Using Approximate Counters or Compressors in the Partial
Product Tree. An approximate (4:2) counter is proposed for an
inaccurate 4 x 4 Wallace multiplier [19]. The carry and sum
are approximated as “10” for “100” in the approximate counter
when all input signals are “1.” The inaccurate 4 x 4 multiplier
is then used to construct a larger multiplier that is referred to
as ICM. In [27], two approximate (4:2) compressor designs are
used in a Dadda multiplier with four different schemes. In this
paper, the more accurate schemes 3 and 4 of the approximate
compressor based multiplier (referred to as ACM-3 and ACM-4)
are considered for comparison. An approximate 4:2 compressor
with encoded inputs and improved accuracy is proposed for
4 x 4 multipliers that are used to build larger multipliers [3]
(referred to as M16). A novel approximate adder is proposed to
accumulate the partial products for the approximate multiplier
with configurable error recovery [12]. Two approximate error
accumulation schemes are proposed to compensate the error
generated by the approximate adder. In scheme 1 (AM1), errors
are accumulated by using OR gates, while both OR gates and the
approximate adders are used in scheme 2 (AM2). The truncation
of half LSBs in the partial products in AM1 and AM2 results in
TAM1 and TAM2, respectively. In [31], approximate half adders,
full adders and 4:2 compressors are utilized to accumulate the
altered partial products; it is denoted as the USask design.

4.1.4 Using Logarithmic Approximation. By using the logarithm
and anti-logarithm approximations of a binary number, [25] pro-
poses a logarithmic multiplier (LM) implemented by shifting and
addition; it is the baseline design for LMs. The accuracy of a LM
is improved in [21] by using a set-one-adder (SOA) and in [2] by
using an improved algorithm with exact and approximate adders
(ILM-EA and ILM-AA).

4.1.5 Using an Automated Process. In [28], 471 8 x 8 approximate
multipliers are evolved by a multi-objective Cartesian genetic
programming method, which are then used to construct 16 x 16
approximate multipliers [29] (i.e., BrnoAl, BrnoA2, BrnoA3 and
BrnoAd4 for different construction methods).

4.2 FEvaluation

Monte Carlo simulation results for 16 x 16 multipliers show that
most of the approximate designs result in large ERs close to
100%. However, ICM has a low ER of 5.45%; some configurations
of BrnoA1l, BrnoA2, BrnoA3 and BrnoA4 also show lower ERs
than the other designs. Thus, MRED, NMED, delay (for delay-
optimized synthesis), power (for area-optimized synthesis) and
PDP (for both delay- and area-optimized syntheses) are jointly
considered to evaluate the approximate multipliers, as shown
in Figs. 4, 5 and 6.

Fig. 4 shows that BrnoA1 is the most accurate design with very
small values of MRED and NMED because only one approximate
8 x 8 approximate multiplier is used to construct a 16 x 16 BrnoAl.
ICM and the truncated Wallace multiplier (TruMW) are faster
than the other designs for a low MRED and NMED, whereas
TAM1, ILM-AA, SOA, PPAM are the fastest while the MRED
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Figure 4: A comparison of optimized delay for the approxi-
mate 16 x 16 multipliers using different error metrics. The
number of truncated LSBs for TruMA and TruMW is from
2 to 8 from left to right, and from 11 to 22 for BAM. The
number of MSBs used for error compensation is from 16
to 10 for AM1l, AM2, TAM1 and TAMZ2. The size of the
accurate sub-multiplier is from 10 to 8 for ETM and SSM.
The mode number is from 4 to 1 for AWTM, from 4 to 3
for ACM, and from 1 to 6 for M16. For BrnoAl, BrnoA2,
BrnoA3 and BrnoA4, the configurations with the smallest
PDPs are shown for a specific MRED, selected from 500 con-
figurations for each design.

and NMED are higher. AM1 is also very fast; however, BAM,
SSM, ETM and the truncated array multiplier (TruMA) are
relatively slow. As shown in Fig. 5, BAM is the most power-
efficient followed by TruMA and BrnoA3, while UDM, AMI1,
AM2, M16 and BrnoA4 are relatively power-hungry. The power
dissipation of TAM1 and TAM2 is in the medium range.

As shown in the delay-optimized results in Fig. 6(a), TAMI,
BrnoA2 and BrnoA3 have smaller PDPs than other approximate
designs (including TruMW) for a similar MRED. For the area-
optimized results in Fig. 6(b), ICM, TAM1, TAM2 and BrnoA3
show smaller PDPs than other designs (including TruMA).

A summary of the accuracy and circuit characteristics for the
approximate multipliers is shown in Table 2. Truncation is an
effective scheme for a high-speed operation with a relatively low
PDP. By using the logarithmic approximation, a multiplier tends
to be hardware-efficient but with relatively low accuracy. The
approximate multipliers designed using the automated process
perform well when a high accuracy is required.
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Figure 5: A comparison of power for the area-optimized ap-

(b) NMED vs. Power (area-optimized)

proximate 16 X 16 multipliers considering MRED and NMED.

Table 2: Summary of approximate multipliers.

- speed power
Multiplier MRED NMED (delay-optimized) (area-optimized) bp
UDM high  high high high
BAM low low
PPAM
ETM low
SSM low
AWTM
ICM low
ACM low high
M16 high high
AM1 high
AM2 high
TAM1 high low
TAM?2
USask low high high
BrnoAl | low low high
BrnoA2
BrnoA3
BrnoA4
LM high  high high low
SOA high  high high low low
ILM-EA | high  high
ILM-AA | high high high low low
TruMA low
TruMW high
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Figure 6: A comparison of power-delay product and MRED
for the approximate 16 x 16 unsigned multipliers.

5 CONCLUSION

In this paper, designs of approximate adders and multipliers are
evaluated in terms of accuracy and circuit characteristics. Specif-
ically, the performance and power consumption are compared by
obtaining the synthesis results under delay and area constraints.
The simulation results show that truncation is an effective
scheme to improve the hardware efficiency of an arithmetic circuit.
Most of the approximate adders in the literature are designed
for a high-speed and low ER (e.g., 0.02% for CSA-5) by cutting
off the carry propagation chain. A truncated adder has a high
ER close to 100%; however, it has a lower power dissipation and
lower PDP than most approximate designs at a similar MRED
(except for LOA and CCBA). The performance (or speed) of a
truncated adder is not as high as some approximate adders.
Unlike the adder, a truncated Wallace multiplier is faster than
most approximate multipliers (except for ICM and TAM1), but
with a higher power at a similar MRED. For a similar accuracy,
BAM and BrnoA3 consume less power than a truncated multiplier.
In terms of PDP, TAM1, TAM2, ICM, BrnoA2 and BrnoA3 have
smaller values than a truncated multiplier for a given MRED.
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